考虑锚杆作用的深埋软岩隧道黏弹塑性力学响应解析

来源 :力学学报 | 被引量 : 0次 | 上传用户:a272437762
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
深埋软岩隧道围岩表现出显著的塑性软化与剪胀特性,而当下的理论分析很少同时考虑这两点,导致预测结果与隧道实际变形行为存在一定误差.为解决该问题,本文基于Kelvin-Voigt流变模型和Mohr-Coulomb强度准则,考虑了塑性阶段时围岩软化与剪胀特征,并引入了掌子面空间约束效应,建立了深埋软岩隧道黏弹-塑性计算分析模型.进一步,为考虑锚杆对隧道围岩的支护作用,在理论模型中,利用等效刚度法建立了加固围岩的力学模型.结合围岩塑性半径与锚杆长度相对关系,给出了6种工况下考虑锚杆加固作用的隧道黏弹塑性力学响应的时效解答.此外,通过数值解与理论结果的对比,理论模型的正确性和有效性得到了较好的验证.最后,为研究锚杆支护对围岩的加固效果,基于理论解答,讨论了锚杆安装时间、锚杆刚度及开挖速度对隧道变形的影响.结果表明:在不考虑锚杆加固作用下,开挖速度仅影响围岩前期变形的发展规律,但对围岩的最终变形量几乎没有影响.若不考虑塑性变形将大大低估围岩变形,造成预测结果与实际情况偏差过大.若隧道开挖速度越快,锚杆的安装应尽量提前,才能保证锚杆有效地发挥限制围岩变形的作用.锚杆刚度与隧道位移存在一种亚线性关系,且锚杆刚度的增加也能够延长围岩进入塑性变形所需的时间.本文的研究结果对相关隧道的设计具有一定的指导作用.
其他文献
在材料的电磁冶金过程及磁约束核聚变装置中,金属液滴在磁场和壁面温度影响下的撞击过程表现出复杂的动力学特性.本文对水平磁场作用下液态镓(Ga)液滴撞击等温和过冷壁面的铺展和回弹特性进行了实验研究.采用高速相机拍摄液滴撞击过程中轮廓的变化,通过图像处理获得不同磁场强度、不同撞击速度和不同底板温度下的最大铺展因子、回弹过程中的最大高度以及产生的二次液滴的半径和速度.碰撞速度由0.45~1.8 m/s,磁场强度从0~1.6 T,底板温度为30°C,?20°C和?10°C.基于实验结果分析了磁场和壁面温度对液滴铺展
液滴热毛细迁移是微重力流体科学中的典型科学问题,微重力液滴动力学研究不仅具有流体力学的理论意义,而且具有重要的实际应用价值.建立了二维轴对称激光驱动液滴迁移模型,通过仿真计算研究微重力环境下激光驱动液滴迁移的过程,研究了液滴直径、母液参数等对液滴迁移速度及行为的影响.首先研究了母液和液滴对激光系数均较小,液滴初始位置不同时液滴的迁移行为;然后研究了母液对激光吸收系数较小,液滴对激光吸收系数较大时,不同液滴直径与母液宽度比条件下液滴的迁移行为.仿真结果表明:当母液和液滴对激光的吸收系数都很小时,液滴迁移的方
增材制造TC4钛合金是具有优良的力学性能和工艺性能的金属材料,在航空航天领域已得到重要应用.近年来,在塑性力学的研究中,探究应力状态对金属材料变形和失效行为的影响得到广泛关注,然而大部分的研究都是在准静态下完成的,对于中高应变率下金属材料变形失效的研究较少.本文从增材制造TC4钛合金的基本力学性能出发,考虑应力状态和应变率对其变形和失效行为的影响,采用应力三轴度η和罗德角参数(θ)表征应力状态,设计了相应的试样形式和实验方法.利用电子万能实验机、高速液压伺服实验机以及分离式Hopkinson杆,结合数字图
采用基于谱元法线性稳定性分析方法,研究了高径比对GaAs熔体(Pr=0.068)液桥热毛细对流失稳的影响,同时结合能量分析揭示了热毛细对流的失稳机制.研究结果表明:与典型低普朗特数(例如Pr=0.011)熔体静态失稳模式和典型高普朗特数(例如Pr>1)熔体振荡失稳模式不同,GaAs熔体热毛细对流失稳模式依赖于液桥高径比(As).随高径比的变化,GaAs熔体热毛细对流存在两种失稳模式.高径比As在0.4≤As≤1.18范围内,热毛细对流失稳是从二维轴对称定常对流转变为三维周期性振荡对流(振荡失稳);高径比在
由复合材料构成的板结构一直以来受到很大关注,其中功能梯度碳纳米管增强复合材料(functionally graded carbon nanotube-reinforced composite,FG-CNTRC)具有异常优越的力学性能,使得诸多学者展开了对功能梯度碳纳米管增强复合材料板结构力学行为的研究.本文以FG-CNTRC板为研究对象,将一种新型的区域型无网格方法——广义有限差分法应用于求解基于一阶剪切变形的FG-CNTRC板结构的静态线性弯曲和自振模态问题.广义有限差分法(generalized fi
基于Pope修正的有效黏度假设,张量基神经网络(tensor based neural network,TBNN)构建了从雷诺平均方程湍流模型(RANS)的平均应变率张量和平均旋转率张量到高精度数值解的雷诺应力各向异性张量的映射.将高精度数值解用于TBNN的训练,从而使TBNN根据RANS求解的湍动能、湍流耗散率和速度梯度预测其雷诺应力各向异性张量,并与对应的高精度数值模拟结果以及风洞实验结果对比以评估TBNN的预测能力.本工作将TBNN的预测能力从低速域拓展至高超声速工况,分别对低速槽道流、低速NACA
由于外部周期性的振动而在液滴表面产生的Faraday不稳定效应广泛存在于超声雾化、喷涂加工等应用中,对Faraday不稳定性进行分析对研究振动液滴的表面动力学有着重要意义.本文将Faraday不稳定性问题从径向振动拓展到竖直振动,研究了竖直振动无黏液滴表面波的不稳定性.竖直方向的振动使得液滴动量方程为含有空间相关项和时间周期系数的Mathieu方程.采用Floquet理论进行求解,得到了竖直振动液滴表面波线性增长率与模态数以及流动参数之间的色散关系.通过求解一个关于表面变形模态的特征值问题,得到了竖直振动
针对同轴气流式液体射流分裂液滴粒径预测模型缺乏的现状,结合射流线性稳定性理论,建立了基于临界模数的同轴气流式黏性液体射流分裂液滴粒径表达式,在此基础上,分别研究了气流旋拧(气流同时存在轴向和周向运动)及流体物性(气体可压缩性、液体黏性、气液密度比和表面张力)对液滴粒径的影响规律.研究发现:周围气流轴向引射作用和同轴旋转作用均会导致分裂液滴粒径整体呈先增大后减小的趋势;且在气流仅作同轴旋转运动时,相同临界模数下气流旋转对分裂液滴粒径的影响较小.在本文的研究参数范围内,分裂液滴粒径随气体可压缩性和气液密度比的
对称性是振动理论中5大美学特征之一,然而对称性破缺又难以避免.本文以工程中常见的易损结构—悬索为例,探究当该系统遭遇非对称性损伤时,对称性破缺对其面内耦合振动特性影响.首先建立受损悬索面内非线性动力学模型,并采用Galerkin法得到离散的无穷维微分方程.利用多尺度法计算该非线性系统发生面内耦合共振响应的调谐方程.截取前9阶模态,利用数值计算方法得到无损和受损悬索的各类共振曲线及其稳定性,通过计算最大李雅普诺夫指数来确定系统的混沌运动.研究结果表明:已有研究常采用抛物线模拟悬索静态构形,然而一旦发生不对称
由于单元应力属于局部性能约束,导致相应的结构拓扑优化存在难以承受的大量约束条件;尽管化整方法极大地减少了约束数量,但是优化结果中有少数应力超限现象.为此,本文在应力约束的结构拓扑优化中,瞄准克服应力超限和提高求解效率两个目标,进行了探索.提出了乘子法及序列二次规划(SQP)法两种解法,首先在化整交融(即化整-集成)解法中的m方集成模型应用,与一阶近似的移动渐近线(MMA)解法进行了求解效率对比.然后,在此基础上采用了效果最好的m方集成模型的SQP解法,建立了求解应力约束下结构体积极小化模型(即s方模型),