基于永磁体的塞曼减速器的优化设计

来源 :华东师范大学 | 被引量 : 0次 | 上传用户:huangpei999
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
塞曼减速器作为高效的减速器,是冷原子光晶格钟、量子简并气体等原子物理实验的重要组成部分,用于获取连续、高通量、缓慢的原子束流。目前,小型化是光晶格钟发展的主要方向之一,要求实验装置具有功耗低、体积小、重量轻的特点。对于传统的通电线圈式的塞曼减速器,需要消耗大量电能并且具有复杂的水冷结构,限制了光晶格钟的小型化。因此,零功耗的永磁体塞曼减速器成为当前研究热点。本文基于永磁体开展了塞曼减速器的优化设计工作,旨在研制出适用于冷镱原子光晶格钟的小型化的永磁体塞曼减速器。首先基于一级磁光阱冷却,介绍了塞曼减速器的运行机制和镱原子激光冷却的实验过程,并阐明一级磁光阱的捕获条件。接着,本文对永磁体塞曼减速器的实验参数进行计算分析。为了获得稳定的塞曼减速过程以及小尺寸的永磁体塞曼减速器,需将有效系数ε、饱和参数s0分别设定为0.75和2。除此之外,还需采用σ-偏振的塞曼光。在上述条件下,本文中捕获速度为220 m/s、长度为10 cm的永磁体结构的塞曼减速器,可以将10%的原子减速到10 m/s以下,能够满足冷镱原子光晶格钟的实验需求。然后,本文针对镱原子,提出了三种小型化的永磁体结构的塞曼减速器模型,分别为横向磁场分布结构、纵向磁场分布结构、环状结构。同时对横向、纵向磁场永磁体塞曼减速器的结构参数进行优化计算,给出了这两种类型塞曼减速器的可实施设计方案。在设计的方案中,通过改变磁子的径向、轴向位置,可以实现塞曼磁场的二维调节。最后,本文研制出了尺寸分别为110 mm×100 mm×30 mm(横向磁场)、120 mm×130 mm×130 mm(纵向磁场)的小型化的永磁体塞曼减速器装置。这两套装置利用螺旋放大原理,使得永磁体的径向调节精度能达到0.01 mm,轴向位置的调节精度为0.1 mm。在进行初步的磁场测量时发现,由于装配、加工的误差以及永磁子的性能差异,测量的塞曼磁场分布略偏离理论预期。但通过对永磁子的轴向、径向位置进行精细地优化调节后,永磁体的塞曼减速器产生的磁场分布与理论预期基本一致,这充分体现出该设计具有高度地可调节性、容错性。在一级磁光阱冷却实验中,可根据原子的荧光信号来优化塞曼磁场分布,使得更多的原子被装载到磁光阱中。本文对永磁体塞曼减速器的小型化工作将为可搬运光钟、星载光钟的发展奠定基础。
其他文献
2018年是中国和东盟建立战略伙伴关系的第15年,“世界工厂”正在从中国转移到东南亚国家,中国与东南亚国家的贸易往来变得更加紧密。同时东南亚国家的资本市场日益完善,资本化率出现了快速提升,很多上市公司都是中国企业的贸易服务配套商或者代工厂。随着两国的经济联系不断加深以及对外开放程度的不断提高,中国与东南亚国家股市的相关性显著提高,联动性研究成为各国学者的热门研究话题。当前学术界关于股市联动性的研究
作为一种新型社交方式,网络直播迅速发展壮大,获得了广泛关注。丰富多样的网络直播内容为学生提供了大量的信息资源,但未经区分的信息也给学生造成了很大的负面影响。如何解决网络直播的负面影响,如何通过网络直播平台开展思想政治教育、创新思想政治教育工作方式成为研究重点。
目的:越来越多的研究表明维生素D除了在维持体内钙磷的稳态和调节骨代谢中发挥重要作用外,在生殖系统中也具有重要作用。一些研究显示体内血液维生素D缺乏与男性的生殖功能下降和生育能力降低相关,但是结论存在不一致,并且有一些研究显示血液中维生素D浓度过高时亦可能会造成精子活力降低和浓度降低。精原干细胞是男性生殖功能的种子细胞,但是维生素D对精原干细胞的具体作用,至今少见报道。本研究首先旨在研究维生素D异常
小麦族(Triticeae)中不同属、种间的天然杂交现象较为普遍。通过杂交产生同源多倍体和异源多倍体物种,是小麦族物种形成的主要方式。鹅观草属(Roegneria C.Koch.)是小麦族中的异源多倍体,由St和Y染色体组组成,具有优良的牧草性状及较强抗逆性,是优质的牧草育种资源。川西北高原是一个高海拔地区,存在着许多丰富且重要的牧草,如鹅观草属和披碱草属。我们在单株种植川西肃草(R.strict
超冷原子实验装置的小型化一直受到传统光学元件尺寸的限制。近年来,光电技术的不断发展使得电磁调控理论和半导体器件制造工艺快速发展,越来越多能够实现集成化的微型光学器件被设计和制造。超材料是利用亚波长高度的单元排布而成的超薄平面光学材料,可以实现对电磁波偏振和相位等性质的灵活控制,因此它为原子芯片的设计提供了新的思路,一些基于超表面的原子芯片也逐渐被提出。本文主要利用传输相位型超表面设计了两种可以用于
四氧化三铁(Fe3O4)材料由于磁学性能优异,在许多领域都得到广泛的应用,并且有关其表面功能化修饰的研究也在不断发展。经研究,无机材料中,碳材料和氧化硅等一直被用于磁性材料的修饰。介孔氧化硅(mSiO2)如果包裹在Fe3O4外层,其致密结构能起到保护Fe3O4颗粒的作用,并且其疏松多孔的结构能大大提高其吸附效果。碳材料包覆Fe3O4颗粒能提高其稳定性,并且碳材料表面丰富的官能团可以与废水中染料分子
学位
气候变化早已成为全球热点问题之一,碳排放是导致气候变化的最主要因素。随着低温技术的发展,绝热层制备工艺在建筑、汽车、船舶、管道运输和航空航天等领域的应用越来越广泛。绝热层制备工艺包含喷涂和打磨等环节,产生大量的碳排放。如何定量分析绝热层制备工艺的碳排放,是降低碳排放需要解决的基础问题之一。目前对绝热层制备工艺的研究主要集中在绝热性能和机械强度等方面,缺乏对绝热层制备工艺碳排放的定量研究。因此,本文
研究背景及目的据报道,全球三分之一的死亡率归因于细菌感染,细菌感染可引起范围广泛的疾病,其中金黄色葡萄球菌是引起临床感染的主要细菌之一,其能够引起包括感染性心内膜炎、骨关节炎、皮肤和软组织炎症、肺炎以及器械感染在内的相关炎症。金黄色葡萄球菌具有较高的致病性,且极易产生耐药性,使得传统的抗菌疗法治疗效果不佳,极大增加了临床细菌感染类疾病治疗的难度。目前,传统的细菌感染类疾病的治疗方法仍然是以抗生素为
锂硫电池因其较高的理论比容量和低成本而备受关注。与基于锂离子嵌入/脱嵌原理的锂离子电池不同,锂硫电池在充/放电过程中会经历多个反应中间体,其中长链多硫化锂(Li2Sn)在电解质中的溶解与扩散会导致活性物质硫的损失,进而引起电池的容量衰退和库仑效率降低。针对上述问题,本文围绕具有多氮杂原子大环结构的酞菁开展分子与材料设计,以动态捕获可溶性的Li2Sn并调节锂离子的沉积行为。首先利用氨基锌酞菁(Zn