空芯光纤结构参数对低损耗传输波段影响的研究

来源 :燕山大学 | 被引量 : 0次 | 上传用户:psobb045
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
空芯光纤在现代光纤领域发展中扮演着越来越重要的作用,除通信和红外波段外,在紫外以及可见波段也具有重要科学与技术意义,特别是在医学、激光清扫等领域有广泛应用。因此具有宽传输波段、低损耗以及高损伤阈值的空芯光纤是目前光纤领域研究的热点之一。本文采用全矢量有限元法,对Kagome光纤以及空芯反谐振光纤结构参数对其低损耗传输波段的影响进行系统研究。
  首先,介绍了本课题的研究背景与意义,并详细介绍了目前国内外关于Kagome光纤和空芯反谐振光纤的研究现状。同时介绍了空芯光纤相关的反谐振反射以及抑制耦合的导光机理,并对全矢量有限元法的相关理论知识进行了阐述。
  其次,对Kagome光纤结构参数的改变影响其低损耗传输波段以及传输损耗的规律进行了研究。改变Kagome光纤的正六边形纤芯半高宽、包层石英网格的厚度以及包层中六芒星晶格的层数等参数,同时将Kagome光纤纤芯形状从正六边形变成反谐振六边形,讨论了纤芯边界形状变化对其低损耗传输波段的影响,并总结变化规律。
  再次,对空芯反谐振光纤结构参数的改变影响其低损耗传输波段以及传输损耗的规律进行了研究。主要改变空芯反谐振光纤纤芯尺寸和形状、包层毛细管尺寸以及壁厚等参数,讨论嵌套管空芯反谐振光纤的嵌套管结构参数改变对其低损耗传输波段的影响,并总结变化规律。
  最后,讨论了空芯反谐振光纤在拉制过程中形变对光纤传输损耗以及低损耗传输波段不可忽略的影响。研究了包层个别毛细管发生尺寸、壁厚、位置以及整体尺寸发生变化时对空芯反谐振光纤低损耗传输波段的影响。
其他文献
“华杯赛”创始以来,共有100多个城市,4000多万学生参加   仅北京市,“奥数”产业的年利润就有20多亿元   国际奥数竞赛中,近20年中国15次总分第一,但大陆还没人获得40岁以下数学家最高荣誉菲尔茨奖    关于奥数的争论近几年来一直此起彼伏,11月北京市出台“希望杯”数学竞赛禁令,奥数又被推到风口浪尖。而目前,正是小升初的关键择校阶段,奥数再次成为很多人关注的焦点。  
期刊
有机薄膜晶体管(OTFT)在有源驱动阵列、有机逻辑器件、射频标签及传感领域具有巨大的应用价值,提升其综合性能来推进实用化是目前研究的热点。本论文对有机异质结的形成机理和积累效应进行研究,利用苝酰亚胺异质结来提高有源层中自由载流子浓度,并通过优化绝缘层来改善有源层的结晶质量。此外,探索苝酰亚胺衍生物薄膜对水合肼的气敏传感。
  首先,研究有机异质结电荷积累效应在OTFT中的作用。选用全氟酞菁铜和并五苯制备非连续累积型异质结,比较研究异质结在沟道处的掺杂作用和电极处的增强注入作用。基于有机-有机界面能级
随着红外光纤在高功率传能领域的应用需求增长,目前对于此种光纤偏振特性的要求也随之提高。相对于实芯光纤,空芯光纤具有高热损伤阈值、低非线性和低材料吸收的优势。新兴的空芯反谐振光纤是当前空芯光纤领域的一个研究热点,如何设计出具有优异偏振特性的空芯反谐振光纤是目前急需解决的问题。本文采用全矢量有限元方法对近红外空芯反谐振光纤的偏振特性进行了研究,同时设计了单模单偏振空芯反谐振光纤和高双折射保偏空芯反谐振光纤。
  首先,简要介绍了本课题的研究背景与意义,并详细说明了目前国内外关于偏振空芯反谐振光纤的研究现
伴随“互联网+”和“5G”时代的来临,未来的互联网必须要满足超高速数据传输,但现行的扩充网络的方法已经存在技术瓶颈。为了扩充通信容量,近年来人们将空分复用技术应用于光纤通信,尤其是轨道角动量。微结构光纤调控灵活,拥有传统光纤无法达到的一系列优点,为了能够使轨道角动量在光纤中传输更稳定,结合微结构光纤的优势,研究人员采用了环芯微结构光纤。但为了保证形成同阶轨道角动量的HE和EH模式不叠加形成线偏振模式,因此相邻模式要有足够大的折射率差,导致环芯非常窄,模式面积小。因此将在环芯中引入高折射率柱,基于耦合模理论
随着无线传感器网络的广泛应用,以及自由空间光通信,也称为无线光通信,具有带宽高、容量大、安全性好、非授权频谱、安装灵活、成本低廉等优点,使得兼具两者优势的自由空间光传感器网络迅速发展。自由空间光传感器网络并被广泛应用在城域网扩展、灾后应急通信、光纤备份、蜂窝回程网络、量子通信以及军事保密通信等领域。然而自由空间光传感器网络通信时,受大气和节点瞄准影响通信质量下降甚至链路中断,同时节点具有有限的能量,因此提高自由空间光传感器网络通信质量、延长网络生存时间是自由空间光传感器网络研究的重要方向。同时当自由空间光
显微热成像技术能够根据温度变化来实现对细微目标对象的非接触成像,是近年来国内光电成像技术领域重要的研究方向。针对前期研制的微扫描显微热成像系统存在的标定过程微位移计算精度低和微扫描系统误差大的问题,本文进行了一些研究,主要工作如下:
  首先,研究提出了一种基于预处理的频率域图像配准算法。该算法首先对采集的低分辨力图像序列进行图像增强,然后对图像的边缘用Tukey窗函数处理,对其进行傅立叶变换,用图像低频部分的像素通过最小二乘法进行配准。仿真结果表明,改进后的算法解决了传统算法存在的配准误差较大、耗
随着光通信技术的不断发展,人们越来越依赖大容量且高效的信息传输,因而对与之匹配的偏振光学器件的需求越来越强烈,现有的光器件也应势逐步趋向于小型化和集成化,微结构光纤的出现更是有力地推动了这一演变过程。近年来为进一步提高微结构光纤偏振器件的性能,学者们在其内部添加金属材料将表面等离子体共振效应引入其中。本文从基于金属表面等离子体共振效应的微结构光纤偏振器件出发,研究了相关光纤偏振器件的损耗、弯曲、带宽、模场面积、色散等特性。主要章节安排和研究内容如下:
  首先,对本课题的研究背景与意义进行了简要介绍
随着近红外长波在医学、工业等方向的发展,近红外长波(1.5~2.5μm)光纤的需求也逐渐变大。目前此波段现有光纤都具有较高损耗,其中实芯光纤多用砷硫系材料,热损伤阈值低,而传统的空芯光纤多为金属电介质膜层结构,制作工艺复杂且化学稳定性差。近年来,空芯反谐振光纤因其制备工艺简单、损耗低、石英基底材料热损伤阈值高且造价低等特点成为近红外长波传输的研究热点。本文采用全矢量有限元方法对空芯反谐振光纤的特性进行系统研究,最终设计1种应用于近红外长波的低传输损耗、低弯曲损耗、单模特性好的空芯反谐振光纤。
  首
光纤传感器以其结构小巧、灵敏度高、抗电磁干扰、易于与其他光纤器件集成等优点受到科研界的广泛研究,并已应用到众多领域,如航空航天、军事国防、生物医疗等等。而长周期光纤光栅由于具有附加损耗小、无后向反射等优点,因此被广泛应用于光纤通信和光纤传感领域。
  本文在总结长周期光纤光栅国内外研究现状的基础上,基于长周期光纤光栅的传感特性,利用少模光纤制备了两种不同类型、不同长度的锥形少模光纤长周期光栅传感器,并对其温度和折射率传感特性进行了深入研究,具体内容包括:
  首先,基于单模光纤长周期光栅的传输
近年来,光纤传感器以其结构紧凑、灵敏度高、抗干扰能力强等优点备受国内外学者的关注。而通过制备光纤、改变传感器的结构或设计改进实验系统来实现待测物理量的高灵敏度测量,已成为国内外学者的研究热点。柚子型微结构光纤的传输模式丰富,与单模光纤的级联结构简单,二者结合具有重要的研究意义。
  本文总结分析了不同类型的光纤扭转传感器的国内外研究现状,采用柚子型微结构光纤作为传感单元,制备了柚子型微结构光纤两端级联单模光纤的光纤扭转传感器,并对该传感器在两种不同的扭转实验系统下的传感特性进行了深入研究,具体内容包