稀土掺杂上转换NaYF4:Yb3+/Er3+材料的水热可控制备与机理研究

来源 :上海交通大学 | 被引量 : 0次 | 上传用户:ylg2008asp
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
稀土掺杂上转换材料因其具有独特的上转换发光行为而在军事、航空航天和生物等诸多应用领域备受关注。目前高品质稀土掺杂上转换材料的制备方法存在操作繁琐且产量偏低的问题。因此,探索一种简单有效的制备高品质稀土掺杂上转换材料的方法对上转换材料的应用具有实际应用价值。本论文的研究共包含三个部分。首先对以乙二酸二乙胺或柠檬酸钠为络合剂制备微米级NaYF4:Yb3+/Er3+进行了研究。对水热反应温度、表面活性剂种类和用量等参量进行了系统的考察。提出了高品质微米级稀土掺杂上转换NaYF4:Yb3+/Er3+材料的水热生长模型,将微米级NaYF4:Yb3+/Er3+的水热生长分为四个过程:1.成核阶段;2.聚集熔合阶段;3.纵向生长阶段;4.奥斯特瓦尔德熟化阶段。采用柠檬酸为络合剂,通过水热方法制备出纳米级的上转换NaYF4:Yb3+/Er3+颗粒,合成的产品平均粒径尺寸在~37.1nm左右,并对水热反应的p H值、升温速度等相关参数进行优化。研究发现,Na+与Re3+的比例会显著影响NaYF4:Yb3+/Er3+的生长过程,较低Na+用量将无法获得高发光强度的六方相产物。p H较低时产物无法形成,而p H较高时产物将会出现微米级的大晶粒。当升温速度为1oC/min时,可以获得纳米级别的均一、纯相产物。对水热系统中引入碱金属K+和Li+离子进行了研究。成功通过K+离子诱导,实现纳米级别的六方相上转换NaYF4:Yb3+/Er3+材料的制备,其平均粒径约~5.1nm左右。Li+的加入可以成功的以间隙掺杂方式进入到NaYF4:Yb3+/Er3+晶体中。当将水热体系中的Na+替换为Li+:Na+:K+=35:30:35的三种离子时,可以得到一个具有特殊发光行为的混相上转换材料,以Li YF4和立方相NaYF4:Yb3+/Er3+为主相,而六方相NaYF4:Yb3+/Er3+为微量相。
其他文献
多组元合金是冶金学研究中的一种新型合金设计理念,它突破了传统合金设计理念对合金体系种类的限制,为设计具有优异性能的新型材料提供了广阔的发展空间,因此引起了科学界的广泛关注。其中,CrCoNi中熵合金是CrCoNi Fe Mn合金体系衍生的新型合金,因其具有目前已知最优异的低温断裂韧性而成为当今最引人注目的新型低温材料之一。然而,目前对它的研究多使用块体材料,制备方法局限于铸造和烧结,使得它的应用受
随着气候变化、环境污染的加剧,作为汽车节能减排的主要方式,轻量化已经成为世界各国汽车制造商承担社会责任、提高自身竞争力的重要手段。使用铝合金、高强度钢等轻量化材料制备车身是实现汽车轻量化的有效方式。自冲铆接工艺作为一种用于连接两种或两种以上板材的冷连接技术,被越来越广泛地应用于汽车车身轻量化材料的连接。铆接设备的C型框架是主要的承力结构,为了保证工艺过程的可靠性和稳定性,需要提高C型框架的刚度,避
弹性系数快速准确的表征不仅对传统的材料力学性能表征有意义,而且对推动材料与器件的发展有着重要的意义,对于探究材料中若干现象本质具有重要的学术价值。相比其它材料表征方法,超声共振谱法(Resonant Ultrasound Spectroscopy,RUS)具有测量精度高、适用面广、不受材料形状大小限制等优点,可以仅用单一试样快速测得全套弹性系数,在材料无损表征中得到了广泛的应用。近年来,基于RUS
石墨烯具有优异的热、力学性能,是制备功能型复合橡胶的理想填料。然而,如何增强石墨烯与橡胶基体的界面作用以及改善其分散性仍是一大挑战。本文围绕这些问题,对石墨烯进行改性,重点研究了改性石墨烯对橡胶复合材料的热、力学性能的影响。采用超声辅助超临界CO2方法制备石墨烯,经3-氨丙基三乙氧基硅烷(APTES)改性,改善了石墨烯与橡胶基体间的界面作用。采用“预混合”方法制备硬脂酸为载体的石墨烯母料,解决了机
由于镁合金具有密度低、比强度高、生物兼容性好以及电磁屏蔽性能优良等特点,因此在航空航天、汽车工业以及生物材料等领域发挥着越来越重要的作用。但由于镁合金耐腐蚀性与耐摩擦性较差,限制了其进一步的应用。为了解决镁合金的上述问题,人们研发了多种多样的表面改性技术,例如电镀、化学镀、化学转化、阳极氧化、微弧氧化以及物理气相沉积(Physical Vapor Deposition)等技术。其中,磁控溅射是物理
在人工电磁结构的设计中,通常称介质的排布顺序按照一定规律周期性排列的结构为周期性电磁结构,这类结构因为具有特殊的电磁特性,所以在微波领域具有非常重要的研究意义。对于周期性电磁结构的研究来说,频率选择表面(Frequency selective surface,FSS)和等离子体光子晶体(Plasma photonic crystal,PPC)具有代表性,在电磁波散射特性抑制等领域有广泛的应用前景。
自然界中绝大多数材料都表现出“热胀冷缩”的现象。材料的这一特性在给人类提供诸多便捷的同时,也给现代生活带来很多困扰,比如会产生热应力、会影响精密零部件的精确度。负热膨胀材料由于具有反常热膨胀性质,自上世纪50年代发现后,受到国际上广泛关注。然而到目前为止,负热膨胀材料研究依然处于实验阶段,负热膨胀性能优异的材料还很少,具有实际应用价值的更少。所以,制备出具有优异的负热膨胀性能的材料是本论文的一项重
对于聚合物复合材料而言,通过参数设计实现物理和机械性能的控制是其重要的应用目标之一,这其中也包括抗疲劳强度,而对于复合材料疲劳寿命评估过程,始终存在一个难以忽视的问题。众所周知,现代运输类飞机机翼的全尺寸疲劳测试程序结构相当复杂,这种程序主要包括:5-10种类型的飞行,每个飞行阶段含5-10种不同水平的载荷,以及一系列交替随机循环载荷的施加。因此,为了简化这些加载程序的组成,评估所考虑程序中各种加
传播电磁模式在界面上的反射相位问题是非常基本的物理问题。传统平面电磁波在介质界面的反射相位可以由菲涅耳反射公式来描述,被广泛熟知。然而,限制在低维材料体系中的传播电磁模式——极化激元的反射相位问题却在长时间内没有得到关注。随着近几年低维材料,如石墨烯,六方氮化硼,碳纳米管纳米光学表征的逐渐兴起,实验上实现高空间限域且高质量因子的极化激元成为可能,这为研究低维电磁传播模式的反射相位问题提供了良好的契
SU-8胶是一种能够以低成本制作高深宽比微结构的负性光刻胶,在非硅MEMS领域有广泛的应用。其中光刻成型的SU-8胶直接作为微结构材料具有多方面优势,但是与无机材料相比,其弹性模量和断裂强度偏低,采用高强度增强相材料复合是这一类材料最为常见的改良方法之一。但是文献报道的有关机械特性改良的研究结果不多,且增强相材料往往会影响其厚胶直接光刻成型能力,因此,开展SU-8胶复合改性技术创新研究对于拓展其在