船用增压器涡轮叶顶间隙变化规律及其调控研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:otherwang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
涡轮叶顶间隙流动十分复杂,叶顶间隙泄漏损失约占气动损失的三分之一左右,并且叶顶间隙与叶高相对比值每增加1%,涡轮效率下降0.8%~1.2%。故减小叶顶间隙降低泄漏损失是提高涡轮性能的重要手段,但由于过渡工况各部件的热响应速率及径向变形量不匹配,导致转子与机匣的摩擦碰撞,从而影响发动机的安全运行。因此,研究涡轮叶顶间隙变化规律并进行有效调控尤为重要。首先,在同时考虑多种载荷的情况下,现有的涡轮叶顶间隙变化预测模型无法有效预测叶顶间隙变化规律。本文针对以上问题,对叶顶间隙变化预测模型的子模型进行了参数修正。然后借助ANSYSWorkbench计算仿真平台,采用气热双向耦合和热-弹单向耦合分别求解涡轮各部件的流场与温度、结构场,并建立叶、盘以及机匣的三维间隙数值计算模型。研究表明:改进叶顶间隙变化预测模型与三维间隙数值计算模型仿真结果大致相吻合,误差小于5%,在1.35工况附近容易出现叶顶间隙的最小值。其次,本文考虑变工况下不同载荷、不同间隙高度以及实际叶顶非均匀间隙形态的影响,对叶顶间隙变化及叶顶端区流热特性进行了研究。研究表明:温度是引起叶、盘以及机匣径向变形的主要因素,分别占总变形量的82.5%、77.5%和99%左右;涡轮叶顶不同间隙高度主要影响叶片与机匣的径向变形,对轮盘变形影响很小;在非均匀间隙形态中,渐扩型间隙泄漏损失最大。最后,针对过渡态工况,研究涡轮叶顶间隙变化规律,并考虑轮盘对热响应滞后的特点,对轮盘增加封严齿进行结构优化,以调控可能出现的“危险点”。研究结果指出:在过渡态加速工况下,“危险点”出现在1.35况点延后0.35~0.5秒的时刻;在过渡态减速工况减速后的0.45~0.75秒的时刻,叶顶间隙变化曲线出现极大值点。在保证轮盘强度符合设计要求的前提下,增加封严齿对降低“危险点”出现的风险起到一定作用。本文在不同维度叶顶间隙预测模型、叶顶间隙变化影响因素、过渡态间隙变化规律以及“危险点”调控等方面的结果,可为船用涡轮增压器及航空发动机/燃气轮机研究过渡态工况下涡轮叶顶间隙变化规律及调控提供参考。
其他文献
首次提出通过薄带铸轧工艺制备高熵合金,相较于传统制备高熵合金工艺,具有亚快速冷却成型和近终成形的特点,是一种高效、节能、低成本的全新制备高熵合金方法。本文针对通过薄带铸轧工艺制备出的铸态A10.3CoCrFeNi、A10.4CoCrFeNi、AlCoCrFeNiNb0.3三种铸带,厚度分别为1.5mm、1.5mm、2.0mm,并围绕三种铸带的铸态、退火态组织性能以及织构演变规律问题进行研究探讨。通
学位
利用Thermo-calc软件模拟研究Ti、N元素对含Ti第二相的固溶析出行为的影响,获得主要析出相的含量随着成分和温度变化而变化的曲线图,并结合固溶度积公式指导高Ti微合金化钢的成分设计。利用固溶度积公式对液析TiN和固析TiN析出行为进行计算,研究微合金化钢中的N、Ti元素对液析TiN和固析TiN的析出量之间的关系,获得最佳的微合金化钢的化学成分配比,制备三种不同成分的铸坯,其Ti含量为0.0
双歧杆菌是人体肠道内主要的益生菌之一,对人体健康具有重要的生理意义。近年来,双歧杆菌产胞外多糖(EPS)因其在食品、生物技术、化妆品、医药等多个领域的潜在应用而倍受关注。EPS是双歧杆菌表面合成和呈现的一种碳水化合物聚合体,其与双歧杆菌的益生菌活性密切相关,并且对微生物生态系统中的益生菌也有积极影响。目前国内外有关双歧杆菌产胞外多糖,研究报道寥寥无几。基于此现状,本课题立题于一种长双歧杆菌ATCC
脊椎动物体内骨骼的骨化过程主要由膜内成骨与软骨内成骨两种形式组成,其中四肢的骨骼主要以软骨内成骨形式骨化。软骨内成骨表现为骨间充质细胞先形成软骨中间体,再矿化为硬骨。这一细胞分化的过程受到信号通路的精细调控,其中FGF信号通路发挥着重要作用。Fgf8是FGF信号通路的重要传导分子,我们实验室过去的实验表明,Fgf8可以促进颅面部间充质细胞向软骨分化。我们实验室前期构建了Shox2Cre/+小鼠,发
超级电容器作为一种非常有应用前景的能量存储装置,因其高的功率密度、宽泛的温度操作范围以及较长的循环寿命等特点,正吸引着越来越多的关注。商用超级电容器多采用碳基电极材料,尤其是活性炭。而作为碳前驱体的生物质原料丰富且可再生,重要的是转换过程采用的方法环境友好。本文以梧桐絮为碳源,通过Fe(NO3)3/KOH和Ni(NO3)2/KOH催化活化共作用,分别制备了碳纳米片(CNs-Fe/KOH)和多孔碳(
本文从外部环境与内部需求两方面论证了劳动、人事及分配制度改革的必然性,以国网重庆电力公司(简称"国网重庆电力")"三项制度改革"为案例,绘制人力资源优化"施工图",探索与电网企业相适应的劳动用工、收入分配等机制,创新构建科学合理评价体系,建立符合实际的"三项制度改革"体系,增强企业活力,推动高质量发展。
期刊
目前,全球化石能源日益枯竭,推进太阳能这一新能源代替传统化石能源的任务迫在眉睫。冶金法制备工业硅与西门子法、硅烷法等传统工艺相比具有成本低、环境友好、能耗低等优点,因而更适合我国发展。冶金法制备工业硅分为传统冶金法以及新型冶金法。传统冶金法是先冶炼出产物硅,再对其进行除杂处理,工序冗长。而新型冶金法则是先对冶炼原料先进行酸洗处理,再进行冶炼,有效缩短除杂工艺,但废液处理为环境带来很大的压力,因此探
过渡金属氧化物作为锂离子电池电极材料已引起人们的广泛关注。其中,Co3O4作为电池的负极材料以其高比容量(890 mAhg-1)成为许多研究者研究的热点。但由于循环过程中导电性差、体积变化大,导致电极的速率容量低、容量衰减快,阻碍了电极的实际应用。为了解决这些问题,本文成功地合成出三种形貌的Co3O4纳米粒子,并着重对形貌控制率高,晶体结构简单的立方体Co3O4进行三种改性方法的研究。首先,本文设
锂离子电池由于其高能量密度、长寿命等优点已广泛应用于各种电子设备中。随着小型化、智能化设备的快速发展,新型柔性、可穿戴电子设备为人们的生活提供了极大的便利。为此,柔性锂离子电池的设计和开发也得到了极大的重视。传统锂离子电池负极材料容量低,而且电极制备工艺无法满足制备柔性电极要求,因此开发柔性的高容量、轻便的一体化电极具有重要的意义。为此,本课题以柔性棉布为基底,经化学镀、原位刻蚀、热处理、碳纳米管