WSE基轻型保温调湿砂浆的制备及其热湿性能研究

来源 :湖南大学 | 被引量 : 0次 | 上传用户:LanceXulei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
经济飞速发展致使人们生活水平不断提高,营造健康舒适的建筑室内环境对人身心健康、以及各种资料或者文物的保存都非常重要,而室内温度和湿度在这方面起到的决定性作用也是决定性指标,但主动式调热调湿带来的往往是建筑能耗增加,出于目前能源紧张的情况考虑,也为相应节约能源的号召,凭借保温调湿材料来创造更为舒适的室内环境方面的研究越来越受到广泛学者的重视。本文出于对室内环境的保温调湿与节能两方面考虑,创新性地对一种本课题组实验的新型的复合保温调湿材料进行轻量化处理,并展开对该材料热湿性能上的改良和探究,并模拟计算其应用能耗,主要内容如下:以海泡石、膨胀珍珠岩、木质纤维、聚丙烯纤维、乳胶粉以及水泥为基础,制备具有环境友好性的WSE基复合保温调湿砂浆。通过发泡手段对WSE基砂浆进行轻量化处理,并明确发泡砂浆的制备流程,随后对发泡砂浆进行养护,获得WSE基轻型保温调湿砂浆。为探究不同发泡水平、养护条件对新型砂浆性能的影响,进行分组制备与养护,并测量各组试块的物理性能以及热湿性能。结果表明,首先随着养护天数的增加,材料的力学性能会有显著增强;随着发泡水平的提升,WSE基轻型保温调湿砂浆的密度和抗压强度、抗折强度会逐渐下降,但其热阻和吸湿能力有明显提升。通过综合比较,可以发现0.4%发泡水平的WSE基轻型保温调湿砂浆具备最优的综合性能,其导热系数仅为0.087W/(m K),密度580kg/m3,吸湿性能良好,且力学性能符合国家发泡水泥标准。以COMSOL Multiphysics有限元软件热湿耦合模型作为数值计算工具,模拟普通墙体、WSE基砂浆墙体、以及新WSE基轻型砂浆墙体的全年能耗,发现经过前人制备的WSE基复合保温调湿砂浆改造后的保温组合墙体能够做减少22.58%~23.85%的全年建筑能耗,而发泡改造后的新WSE基轻型砂浆墙体相比普通墙体来说,全年节能能耗可以达到31.09%~33.28%,并且据模拟数据显示,夏季负荷主要来源于潜热负荷,其比重较大,所以潜热负荷是全年能耗模拟计算中不容忽视的一环,朝向因素以及冬夏季太阳辐射也对能耗影响不小,建议根据主朝向因素考虑选择最佳保温层厚度以及保温措施以及遮阳方式。本文通过理论分析、实验制备、大量数据测试以及模拟分析,创新性地通过发泡手段得到了具有环境友好性的WSE基轻型保温调湿砂浆。并对其发泡水平和养护天数的影响进行了探讨,优化了其热工性能,并解决了传统调湿砂浆重量过大的问题。此外,本文使用COMSOL模拟的手段,对WSE基新型保温调湿砂浆的节能潜力进行了讨论,为推广复合调湿保温砂浆提供了部分数据支持以及理论依据。
其他文献
土壤镉(Cd)污染已成为近年来十分严峻的全球性环境问题,对生物个体乃至整个生态环境都产生了诸多危害。对比传统的物理和化学修复,生物修复具有经济简便、无二次污染、绿色高效等优势。其中,植物内生菌因其占据有利的生态位,在促进宿主生长,提高宿主抗逆性,改变重金属赋存形态等方面有着独特优势,植物内生菌与其宿主植物联合修复重金属得到了越来越多的关注。生物炭具有比表面积高、孔隙结构发达及环境稳定性好等特点,是
水稻(Oryza sativa L.)是世界主要粮食作物之一,具有重要的作用和意义。水稻叶片产生适度的卷曲有利于其保持直立的姿态,同时也能减少叶片间的相互遮挡,提高水稻对光照的利用效率。前期研究发现,在水稻中过表达LRRK1基因后,转基因株系的叶片产生了明显的正卷表型。对卷曲叶片进行横切面的切片,通过显微镜观察发现,转基因株系的叶片中泡状细胞的数量和大小远低于野生型,这是卷叶性状产生的直接原因,但
作为利用水资源的基本市政设施,城市供水管网是城市发展的重要一环。相关数据表明,我国供水管网漏损率普遍较高,在漏损控制方面与部分发达国家有较大差距。对此,本研究就分区压力管理和管网优化改造进行系统研究,以期为供水管网漏失控制提供适用技术。传统的分区减压方式是封闭区域边界采用单入口减压,其弊端是供水安全性及均衡性较差。针对这一弊端,本文综合节点自由水压和管网拓扑结构信息通过BFSN聚类算法对城市供水管
超高性能混凝土(Ultra-High Performance Concrete,UHPC)凭借其优越的力学性能和耐久性,推动着土木工程结构向轻、薄、大跨方向发展。与普通混凝土相比,UHPC的突出优势之一是其优异的抗拉性能,从结构层面看,UHPC的抗拉性能受试件尺寸的影响,从材料层面看,UHPC的抗拉性能受基体材料和钢纤维特性的影响,为探究UHPC的轴拉性能、弯拉性能以及其换算关系,本文主要完成了以
偏高岭土性能优越,相关的深度开发对拓展其应用领域,加快我国经济发展有着重要意义。分子动力学是原子尺度下研究材料复杂物理和化学过程的有效工具,不仅能够克服实验条件的限制,而且可以对宏观实验提出方向性指导。本文采用分子动力学模拟的方法,从原子层面探究了偏高岭土理化性质变化的微观机理,为推进偏高岭土精细化改性进而在各领域内的广泛应用提供理论依据和指导。本研究的主要成果如下:(1)偏高岭土模型合理性及结构
在猪群中,猪圆环病毒(Porcine Circovirus,PCV)是常见的病原之一。该病毒的传播主要是由不同猪群间动物个体的流动引起的,PCVs也可能发生跨物种传播(如猪传染给啮齿动物、猪传染给牛、猪传染给毛皮动物等)。同时PCV在猪群中的阳性率很高,长期威胁着我国养猪业,阻碍着养猪业的经济发展。应用感染性克隆拯救病毒进而研究病毒的复制和病毒的致病机制是目前病毒学研究的常用策略。本研究在我国湖南
由于疲劳昏昏欲睡和分心而导致的危险驾驶是交通事故的主要原因,造成了重大的人员伤亡和经济损失,正在成为世界范围内日益严重的问题。因此,迫切需要通过准确检测危险驾驶行为和生成实时警报的系统来解决这一问题。在观察到各种危险驾驶行为会引起对声源信号作出响应的声学特征的启发下,本文提出了基于声学的危险驾驶检测系统。该系统准确地检测危险的驾驶行为,并使用现成的智能手机生成实时警报。与最先进的系统相比,本文不需
目前通信技术、大数据、AI、Io T、边缘计算等前沿科技在各行各业有着广泛的应用和良好的发展前景。由于这些科技的发展都离不开光通信作为基础的技术支撑,因此在信息通信系统中保持光通信网络的稳健性是当前面临的任务与挑战的重中之重。不言而喻,相对于曾经普遍应用的电缆通信技术,光通信网络已经是一种发展成熟、铺设便捷、节约成本、组网灵活、更强的可管理性、可靠性高的网络通信技术。如今,光网络通信技术已在世界范
消化道肿瘤的早期病灶较深且无任何明显症状,不易察觉,传统的内窥成像技术无法精确筛查、诊断出来。传统的消化道内窥技术大多采用白光成像,这种成像方式最大的缺点是只能观察组织的表皮,无法得到深度信息。除此之外,超声内窥成像只能分辨解剖结构的变化,无法探知早期的消化道肿瘤。因此目前专门针对消化道早期肿瘤的内窥成像技术仍有待开发。光声成像是一种复合型的新型医学成像方式,兼备了纯光学成像高分辨、高对比度和纯超
永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)因具有功率密度高、转换效率高、体积小、响应速度快、转矩脉动小等优势,在工业各领域备受关注。PMSM无位置传感器控制技术可以省去机械式位置传感器,降低成本、提高可靠性,该技术在近几年发展迅速,已逐渐进入工业应用领域。然而无位置传感器控制技术也引进了新的问题——导致PMSM的带速重投难度加大。带速重投指的是在